An Efficient Pseudoinverse Linear Discriminant Analysis method for Face Recognition

نویسندگان

  • Jun Liu
  • Songcan Chen
  • Daoqiang Zhang
  • Xiaoyang Tan
چکیده

Pseudoinverse Linear Discriminant Analysis (PLDA) is a classical and pioneer method that deals with the Small Sample Size (SSS) problem in LDA when applied to such application as face recognition. However, it is expensive in computation and storage due to manipulating on extremely large d × d matrices, where d is the dimensionality of the sample image. As a result, although frequently cited in literature, PLDA is hardly compared in terms of classification performance with the newly proposed methods. In this paper, we propose a new feature extraction method named RSw+LDA, which is 1) much more efficient than PLDA in both computation and storage; and 2) theoretically equivalent to PLDA, meaning that it produces the same projection matrix as PLDA. Our experimental results on AR face dataset, a challenging dataset with variations in expression, lighting and occlusion, show that PLDA (or RSw+LDA) can achieve significantly higher classification accuracy than the recently proposed Linear Discriminant Analysis via QR decomposition and Discriminant Common Vectors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy

Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...

متن کامل

Face Recognition by Cognitive Discriminant Features

Face recognition is still an active pattern analysis topic. Faces have already been treated as objects or textures, but human face recognition system takes a different approach in face recognition. People refer to faces by their most discriminant features. People usually describe faces in sentences like ``She's snub-nosed'' or ``he's got long nose'' or ``he's got round eyes'' and so like. These...

متن کامل

Bilinear Discriminant Analysis for Face Recognition

In this paper, a new statistical projection method called Bilinear Discriminant Analysis (BDA) is presented. The proposed method efficiently combines two complementary versions of Two-Dimensional-Oriented Linear Discriminant Analysis (2DoLDA), namely Column-Oriented Linear Discriminant Analysis (CoLDA) and Row-Oriented Linear Discriminant Analysis (RoLDA), through an iterative algorithm using a...

متن کامل

A new perspective to null linear discriminant analysis method and its fast implementation using random matrix multiplication with scatter matrices

Null linear discriminant analysis (LDA) method is a popular dimensionality reduction method for solving small sample size problem. The implementation of null LDA method is, however, computationally very expensive. In this paper, we theoretically derive the null LDA method from a different perspective and present a computationally efficient implementation of this method. Eigenvalue decomposition...

متن کامل

Local Curvelet Based Classification Using Linear Discriminant Analysis for Face Recognition

In this paper, an efficient local appearance feature extraction method based the multi-resolution Curvelet transform is proposed in order to further enhance the performance of the well known Linear Discriminant Analysis(LDA) method when applied to face recognition. Each face is described by a subset of band filtered images containing block-based Curvelet coefficients. These coefficients charact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006